Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays
نویسنده
چکیده
Feedback inhibition of gene expression is a widespread phenomenon in which the expression of a gene is downregulated by its protein product. Feedback in eukaryotic cells involves time delays resulting from transcription, transcript splicing and processing, and protein synthesis. In principle, such delays can result in oscillatory mRNA and protein expression. However, experimental evidence of such delay-driven oscillations has been lacking. Using mathematical modeling informed by recent data, I show that the observed oscillatory expression and activity of three proteins is most likely to be driven by transcriptional delays. Each protein (Hes1, p53, and NF-kappaB) is a component of a short feedback inhibition loop. The oscillatory period is determined by the delay and the protein and mRNA half-lives, but it is robust to changes in the rates of transcription and protein synthesis. In contrast to nondelayed models, delayed models do not require additional components in the feedback loop. These results provide direct evidence that transcriptional delays can drive oscillatory gene activity and highlight the importance of considering delays when analyzing genetic regulatory networks, particularly in processes such as developmental pattern formation, where short half-lives and feedback inhibition are common.
منابع مشابه
The effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats
Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...
متن کاملThe Anti-cancer effects of Celastrol on K562 cell line
Background and Objective: The level of NF-κB factor expression (a transcriptional factor which increases the expression of inflammatory genes) is often increased in various human cancers. Therefore, NF-κB inhibitors such as Celastrol may prevent cancer development. The purpose of this study was to evaluate the anticancer effects of Celastrol on K562 cells proliferation. Materials and Methods:...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملDendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells
Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were ...
متن کاملProtosappanin A protects against atherosclerosis via anti- hyperlipidemia, anti-inflammation and NF-κB signaling pathway in hyperlipidemic rabbits
Objective(s): Protosappanin A (PrA) is an effective and major ingredient of Caesalpinia sappan L. The current study was aimed to explore the effect of PrA on atherosclerosis (AS). Materials and Methods: Firstly, the experimental model of AS was established in rabbits by two-month feeding of high fat diet. Then, the rabbits were randomly divided into five groups and treated with continuous high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003